On the complexity of computing the handicap of a sufficient matrix
نویسندگان
چکیده
The class of sufficient matrices is important in the study of the linear complementarity problem (LCP) — some interior point methods (IPM’s) for LCP’s with sufficient data matrices have complexity polynomial in the bit size of the matrix and its handicap. In this paper we show that the handicap of a sufficient matrix may be exponential in its bit size, implying that the known complexity bounds of interior point methods are not polynomial in the input size of the LCP problem. We also introduce a semidefinite programming based heuristic, that provides a finite upper bond on the handicap, for the sub-class of P-matrices (where all principal minors are positive).
منابع مشابه
Analytical aspects of the interval unilateral quadratic matrix equations and their united solution sets
This paper introduces the emph{interval unilateral quadratic matrix equation}, $IUQe$ and attempts to find various analytical results on its AE-solution sets in which $A,B$ and $CCC$ are known real interval matrices, while $X$ is an unknown matrix. These results are derived from a generalization of some results of Shary. We also give sufficient conditions for non-emptiness of some quasi-solutio...
متن کاملComputing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method
A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...
متن کاملTask Scheduling Algorithm Using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in Cloud Computing
The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ever-increasing advancements of information technology and an increase of applications and...
متن کاملRole of Kaplan’s Preference Matrix in the Assessment of Building façade, Case of Gorgan, Iran
Buildings play a key role in organization and arrangement of city appearance. Specially, their facades have profound impact on the quality of urban landscapes while playing an important role in assessing urban environments by citizens. The introduction of superior building facades in terms of popular preferences is mostly based on visual elements of building facades. Furthermore, aesthetic pref...
متن کاملComputing the additive degree-Kirchhoff index with the Laplacian matrix
For any simple connected undirected graph, it is well known that the Kirchhoff and multiplicative degree-Kirchhoff indices can be computed using the Laplacian matrix. We show that the same is true for the additive degree-Kirchhoff index and give a compact Matlab program that computes all three Kirchhoffian indices with the Laplacian matrix as the only input.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 129 شماره
صفحات -
تاریخ انتشار 2011